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Analysis of Multilayer Interconnection Lines
for a High-Speed Digital Integrated Circuit
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Abstract —A general method for the analysis of multilayer interconnec-
tion lines is presented. This method is capable of predicting frequency
dispersion of the transmission-line parameters and is useful for accurately
investigating the coupling phenomena among adjacent lines and the input
and output impedance relations.

I. INTRODUCTION

N A VERY HIGH-SPEED digital integrated circuit, it

. is important to know the effects of interconnection
lines, such as delay time and coupling between different
lines. To date, a number of approximation techniques have
been used for analyses of these characteristics. For delay
time, a distributed RC network approximation is a typical
approach, and for coupling, a quasi-static capacitance and
inductance calculation is used [1], [2]. However, as the
speed of the signal in the IC chip is increased, the electro-
magnetic nature of the pulse transmission will eventually
appear. For instance, at clock rates of 10 Gbits/s, the
clock harmonics are well into the millimeter-wave range
(30-300 GHz), and the electromagnetic properties of the
interconnection lines become important [3].

This paper presents a tool for the analysis of such lines.
The technique is based on the full-wave analysis, and has
originally been developed for analyses of multilayered hy-
brid and monolithic microwave integrated circuits. The
features of this method are as follows.

1) It is a comprehensive analysis. As such, all of the
approximation techniques used to date are considered as
the limiting case of this method.

2) It can handle any number of wires (or lines) located at
any of the different-layer interfaces. No symmetry in the
structure is required and the width of the wire is arbitrary.
The thickness of the wire is assumed to be negligible.

Information about the transmission-line characteristics
can then be used for describing the circuit parameters of a
section of a coupled-line system. If losses due to the
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Fig. 1. Cross-sectional view of generalized coupled interconnection lines.
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Fig. 2. Distribution of the electric field of the two different modes in a
coupled two-line system.

semiconductor substrate are to be considered, this method
allows us to simply replace the ground plane with a lossy
dielectric layer [4]). When poly-silicon is used as a conduc-
tor in the integrated circuit, we can include the loss of the
conductor in the analysis to take its effect into account [5].

II. ANALYSIS

We use the spectral-domain method to determine the
propagation constants and characteristic impedances [6].
Fig. 1 shows a general configuration of the multilayer
interconnection lines. There exist as many modes as the
number of lines located above the ground plane. These
modes combine together and form the actual field around
the lines, which satisfies all the input and output boundary
conditions. An example is shown in Fig. 2. There are two
fundamental modes existing in this two-line system which
determine the phase delay and the cross-talk between (wo
lines. The distribution of the electric field of the two modes
are schematically shown in the figure. Mode 1 in the figure
corresponds to an even mode in the symmetric structure,
while mode 2 corresponds to an odd mode. The phase
constants of these modes are calculated by solving an
eigenvalue equation in the spectral domain. The character-
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Fig. 3. A coupled two-line model used in the computation. (a) Cross-

sectional view. (b) Side view. w,=w, =h; =h, =10 pm,a =30 pm,
[=0.5 mm.

istic impedances are defined through the following relation

[7): .
2P, JE < Hxds

ct 2
IZI

1
where P, is the average partial power associated with the
line i and I, is the axial current in the line i. In the above,
E, is the total electric field and H, the magnetic field
created only by the current on the line i. Once the phase
constants and the characteristic impedances of two modes
are found, we can consider this coupled-line system as a
black box and characterize it by network parameters such
as an impedance matrix. The network parameters are given
by a 4 X4 matrix [8]. The matrix elements must be recalcu-
lated for each frequency since the phase constants and the
characteristic impedances are frequency-dependent.

III.

A two-line system as shown in Fig. 3 is chosen as a
model for the numerical computations. Silicon dioxide
(5i0,,¢,=4) is chosen for the diclectric material. Two
metal strips are located on the different dielectric interfaces
and are separated by 30 pm horizontally. First, the
frequency dependence of the phase constants and the
characteristic impedances are investigated. Fig. 4 shows the
effective dielectric constants for the two independent
modes. Mode 1, which is similar to an even mode of the
symmetric lines, has faster phase velocity than mode 2.
This indicates that the field around the lines spreads out of
the dielectric layers. On the other hand, the effective dielec-
tric constant of mode 2 is close to 4, which means the field
is confined in the SiO, region, as expected for an “odd”
mode. For this particular choice of structural parameters,
the frequency dispersion appears at frequencies higher than
100 GHz, where the phase velocities of both modes become
slower. The frequency dependence of the characteristic
impedances is shown in Fig. 5, where Z,,, indicates the
characteristic impedance of the line j of the mode i. The
frequency dispersion is prominent for Z_,,. To confirm the
accuracy of the results, we investigated how well the rela-
tion Z,,/Z,,=2Z.,,/Z., given in [8] is satisfied. We
defined

COMPUTATIONAL RESULTS

e=|[1- 222/ Z1Z ol
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For all the frequencies in Fig. 5, € was found to be less
than 0.01. ‘

Using these results, we can now calculate network
parameters of this coupled two-line system. Fig. 6 shows
several elements of the 4 X 4 impedance matrix. The length
of the lines are chosen to be 0.5 mm. All the matrix
elements are purely imaginary because the structure is
lossless. Since the structure is symmetric, there are several
equal elements in the matrix, e.g., Z,;=Z,,, Z;,=Z,,,
etc. All Z, elements become capacitive at low frequencies,
while Z, ., i# j, becomes inductive. For comparison, the
quasi-static results from a conventional capacitance calcu-
lation are also shown in the figures as dotted lines. They
are almost identical, but become slightly different at high
frequencies because of the frequency dispersion as men-
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Fig. 8. Input impedances from port 1 (Z,,)) and port 2(Z,,,). (@) Z,=Z, = Z,=Z, =30 Q. (b) Z,=Z, = Z; =Z, =50
0. 2,=2,=2,=2Z,=150 Q. (d) Z;=Z,=2Z3=Z, =200 Q.(¢) Z, = Z, =30 Q,Z, =7, =200 Q.
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Fig. 9. Voltages at each port when ports 2 through 4 are terminated by Z, through Z, and a source with impedance 2, is
connected to port 1.
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Fig. 10. Normalized voltages at each port. (a) 1-V source is connected at port 1. Z,=Z, =30 ©,Z, = Z; =200 Q. (b) 1-V
source is connected at port 2. Z;=Z,=30 Q, Z,=2Z,=200 Q. (¢) 1-V source is connected at port 1. Z,=Z,=Z,=Z,=50 Q.

tioned above. In many practical applications, such small
differences between the present full-wave and quasi-TEM
analyses may not be important. However, it is important to
recognize that such a fact cannot be found out until a
full-wave calculation is performed.

The input impedances are also plotted with respect to
the frequency. The input impedance looking from one port,
while other ports are terminated by some impedances, are
calculated (Fig. 7). In Fig. 8, the results are shown for

different terminating impedances varying from 30 Q to 200
Q. When terminations are 30 {2, the input impedance
looking from port 1 appears to be almost constant over a
wide range of frequency (Fig. 8(a)). The characteristic
impedance of line 1 (lower line) of mode 1 (Z ;) is about
30 @, and, therefore, this is the value required for the
matching of line 1. On the other hand, the input impedance
of port 2 is found to be almost constant when terminations
are 200 Q@ (Fig. 8(d)). This value corresponds to the char-
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acteristic impedance of line 2 (upper line) of the mode 2
(Z,,). In this case, the input impedance of port 2 is
affected by the large frequency dispersion of the character-
istic impedance Z,,. When line 1 is terminated by 30 Q
and line 2 by 200 £, the input impedances of both ports 1
and 2 are constant over the frequency (Fig. 8(¢)). As a
consequence, the characteristic impedances Z 4, and Z_,,
take important roles in matching conditions.

Finally, the relationships between the terminal voltages
are investigated (Fig. 9). In Fig. 10(a), the voltages of all
four ports are calculated and plotted with respect to
frequency. Ports 2 and 3 are terminated by 200 { and port
4 is terminated by 30 Q. At port 1, a source voltage with an
internal impedance of 30 Q is connected. As the figure
shows, the voltage of port 4 is constant over the frequency.
Relatively large voltages appear at ports 2 and 3, which
indicates large crosstalk. In Fig. 10(b), a 200-Q source is
connected at port 2. In this case, the crosstalk is smaller,
which is probably because of the larger impedance level of
the upper line. Fig. 10(c) shows the voltage relationships
when all ports are terminated by 50 Q. A constant output
voltage is no longer expected in this case.

1V. ConcLusioNs

The spectral-domain approach is suitable for analyzing
the general interconnection of lines in the integrated cir-
cuit. It gives frequency-dependent information about the
propagation characteristics, and the derived 4-port equiv-
alent-network parameters are more accurate and useful
than the conventional lumped-element model. This method
is general and can be easily extended to the multiconductor
case.
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